Self-consistent tight binding model adapted for hydrocarbon systems

نویسندگان

  • D. A. ARESHKIN
  • O. A. SHENDEROVA
  • D. W. BRENNER
چکیده

A self-consistent environment-dependent tight binding method is presented that was developed to simulate eigenvalue spectra, electron densities and Coulomb potential distributions for hydrocarbon systems. The method builds on a non-selfconsistent environment-dependent tight binding model for carbon [Tang et al., Phys. Rev. B 53, 979 (1996)] with parameters added to describe hydrocarbon bonds and to account for self-consistent charge transfer. A detailed description of the parameterization procedure is given. Case studies that examine electron emission-related properties of carbon nanotubes demonstrate the utility of the method. The results of these calculations indicate that field enhancement in the vicinity of a nanotube tip is higher for open-ended than for capped nanotubes. At the same time open-ended nanotubes exhibit a higher potential barrier in the tip region. This barrier deteriorates the coupling between conducting states in the nanotube and free electron states in vacuum, and may increase the field emission threshold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach

Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...

متن کامل

Calculation for Energy of (111) Surfaces of Palladium in Tight Binding Model

In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...

متن کامل

Berry curvature and energy bands of graphene

In this paper energy bands and Berry curvature of graphene was studied. Desired Hamiltonian regarding the next-nearest neighbors obtained by tight binding model. By using the second quantization approach, the transformation matrix is calculated and the Hamiltonian of system is diagonalized. With this Hamiltonian, the band structure and wave function can be calculated. By using calculated wave f...

متن کامل

Rock physical modeling enhancement in hydrocarbon reservoirs using Choquet fuzzy integral fusion approach

Rock physics models are widely used in hydrocarbon reservoir studies. These models make it possible to simulate a reservoir more accurately and reduce the economic risk of oil and gas exploration. In the current study, two models of Self-Consistent Approximation followed by Gassmann (SCA-G) and Xu-Payne (X-P) were implemented on three wells of a carbonate reservoir in the southwest of Ira...

متن کامل

Accurate Treatment of Energetics and Geometry of Carbon and Hydrocarbon Compounds within Tight-Binding Model.

We show that a simple noniterative tight-binding model can provide reliable estimates of energetics and geometries of molecules with C-C and C-H bonds. The mean absolute error in heats of formation, ∼4.6 kcal/mol, is essentially smaller than those found in previous tight-binding schemes. The internal consistency of the calculated heats of formation enables the reliable prediction of bond dissoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005